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Abstract. Changes in the high latitude climate system have the potential to affect global climate 

through feedbacks with the atmosphere and connections with mid latitudes. Sea ice and climate 

models used to understand these changes have uncertainties that need to be characterized and 

quantified. We present a quantitative way to assess uncertainty in complex computer models, 

which is a new approach in the analysis of sea ice models. We characterize parametric 

uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify 

the sensitivity of sea ice area, extent and volume with respect to uncertainty in 39 individual 

model parameters. Unlike common sensitivity analyses conducted in previous studies where 

parameters are varied one at a time, this study uses a global variance-based approach in which 

Sobol’ sequences are used to efficiently sample the full 39-dimensional parameter space. We 

implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and 

volume are used to compute the Sobol’ sensitivity indices of the 39 parameters. Main effects and 

interactions among the most influential parameters are also estimated by a non-parametric 

regression technique based on generalized additive models. A ranking based on the sensitivity 

indices indicates that model predictions are most sensitive to snow parameters such as 

conductivity and grain size, and the drainage of melt ponds. It is recommended that research be 

prioritized towards more accurately determining these most influential parameter values by 

observational studies or by improving parameterizations in the sea ice model. 
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1. Introduction 

High latitudes are important components of the climate system where changes occur more 

rapidly than at lower latitudes and can have significant effects on the global climate  [Screen and 

Simmonds, 2010]. Such effects can be amplified by feedbacks between the ocean-ice-atmosphere 

system and through connections with mid and lower latitudes [Vage et al., 2008; Francis et al., 

2009]. To understand these processes, Earth system models are used which typically include 

atmosphere, ocean, ice and land components. Sea ice models are not only important in the 

context of climate dynamics but also for operational forecasts at high latitudes [Blockley et al., 

2014; Dupont et al., 2015]. . Sea ice models have different levels of complexity that typically 

include a significant number of physics-based processes. Sea ice model estimates, like any other 

models, are expected to deviate to some degree from the exact representation of the real world 

because of uncertainties associated with model predictions. It is important to establish and 

understand potential sources of uncertainty and flaws in the models used in climate research and 

operational forecast systems, so that conclusions drawn in climate studies are robust and 

transparent, and operational predictions adequate. This should improve, for instance, seasonal ice 

forecasts and our ability to project future impacts of sea ice loss. 

Uncertainty in models can arise from multiple sources [Kennedy and O'Hagan, 2001], 

including parametric uncertainty, which is caused by the lack of knowledge of the exact values 

that model parameters should take in the simulations. For sea ice models, parameterizations of 

physical processes include a number of parameters for which accurate values are not always well 

established. The Los Alamos sea ice model (CICE 5.1), for instance, has implemented new or 

complex parameterizations, which include a delta-Eddington radiation scheme [Holland et al., 

2012], a new melt pond formulation [Hunke et al., 2013], a mushy thermodynamic model 

[Turner et al., 2013], and a variable drag coefficient scheme [Tsamados et al., 2014]. There is a 

need to examine the sensitivity of model predictions to uncertainties in input parameters. A 

comprehensive sensitivity analysis should help to identify important physical processes affecting 

sea ice distributions, and determine what model components explain most of the model 

uncertainty. 

This article is protected by copyright. All rights reserved.



 3

It has been common practice in climate studies to assess the sensitivity of models to reduced 

sets of input parameters, or only over limited ranges of parameter variation. The most common 

practice is to conduct one-at-a-time (OAT) sensitivity analyses in which one parameter is varied 

with respect to a control experiment, while others are kept constant, usually at default values. 

This approach, however, cannot identify interactions among parameters and assumes linearity 

and additivity in climate models, which are strong limitations given the complexity of the 

climate system. The common approach only examines the main effects of parameters, and does 

not quantify model uncertainty due to individual parameters. An objective ranking of important 

parameters is therefore not possible in OAT analysis. For sea ice models, in particular, Peterson 

et al. [2010] examined sensitivity of sea ice to 10 model parameters in two standalone sea ice 

model configurations, using a linear regression approach and the standardized regression 

coefficients as measurements of model sensitivity. Uotila et al. [2012] also examined the 

sensitivity of sea ice in a coupled ocean-ice model to 10 parameters using 100 model runs. They 

explored the parameters sampling at discrete levels within prescribed ranges of variation, and 

included a reduced subset of model parameters used in the delta-Eddington radiation scheme. A 

sensitivity study using a global coupled climate model [Rae et al., 2014], explored sea ice 

sensitivity to 16 parameters, examining departures of 16 experiments from model results in a 

control run simulation. Other sensitivity analyses applied to sea ice models have been  based on 

automatic differentiation [Kim et al., 2006] or the use of adjoint models. These methods, 

however, are mainly local, which means the sensitivity is examined only in the vicinity of certain 

parameter configurations without fully exploring the entire parameter space in the model, which 

can have serious limitations on high dimensional parameter spaces [Saltelli and Annoni, 2010]. 

A full exploration of high-dimensional parameter spaces in climate models is prohibitive in 

conventional sensitivity analyses because of the computing resources required to conduct a 

single model run. An optimal approach, called global sensitivity analysis (GSA), is one in which 

all input parameters are taken into account, examining possible interactions among them, and 

exploring parameters over all the plausible values they can take. 

In this study we use GSA to examine the sensitivity of the CICE sea ice model in standalone 

mode to the parameters contributing to uncertainty in model predictions. It could be expected 

that sensitivities in a standalone configuration differ to some extent from those in a coupled 
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climate system. The approach in this study, however, has the advantage of requiring significantly 

less computational resources while still being able to elucidate important physical processes 

affecting sea ice. The approach uses quasi-random sequences to sample the parameter space, and 

makes use of a fast surrogate of the sea ice model to acquire the large amount of data necessary 

to estimate sensitivity. This approach uses a large ensemble of model runs, allowing us to 

conduct the sensitivity analysis at an unprecedented level of detail. Our objectives are to 

determine the most important model parameters contributing to uncertainty in predictions of sea 

ice, emphasizing snow and radiation parameters, and other new model developments since Kim 

et al. [2006], and to elucidate underlying physical processes of these parameters in terms of their 

individual effects as well as the most important interactions among them. Section 2 presents the 

GSA methodology used in this study, which is based on the variance decomposition of model 

predictions. The methodology used to characterize model uncertainty and quantify the model 

sensitivity is presented in Section 3. In Section 4 we present the results of the uncertainty 

propagation through the model onto model predictions, the implementation of a surrogate of the 

sea ice model, and estimates of sensitivity indices. A discussion of the sensitivity indices, and 

their implications, is presented in Section 5, with conclusions in Section 6. 

2. Variance-based Global Sensitivity Analysis 

The purpose of a Global Sensitivity Analysis (GSA) is to determine the contribution of 

uncertainty in individual model parameters to the model uncertainty, allowing individual model 

parameters to vary over the entire range of plausible values they may take. The uncertainty of a 

model parameter can be characterized by a probability distribution (section 3.2). The term 

“global” in this context implies that an efficient way of sampling must be adopted so that 

uncertainties in all parameters are sampled jointly. Importantly, no assumptions are made about 

the linearity or additivity of the model, implicit in most commonly used sensitivity analyses. 

The variance of model predictions over input parameter distributions is used as a 

measurement of sensitivity. Given a model prediction, a variance-based GSA explicitly seeks to 

apportion its variance to individual parameters. Given p model input parameters, a p-dimensional 

parametric space can be uniformly distributed and normalized in a unit hypercube 
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Ω |0 1; 				 1, . . . ,  

A Hoeffding decomposition [Saltelli et al., 2010] of a model prediction  can be 

expressed as a sum of 2p terms of increasing dimensionality [Sobol', 2001] 

, ⋅ ⋅ ⋅ , ,…, , , . . . ,  ( 1 ) 

where the integrals of the functions in the decomposition over any of their variables must be 

zero, and therefore the functions be mutually orthogonal [Jacques et al., 2006]. It follows that 

variances can also be decomposed according to 

	 ⋅ ⋅ ⋅ , ,…,  ( 2 ) 

Normalizing the above equation by the total variance V(Y), one obtains 

⋅ ⋅ ⋅ , ,…, 1 ( 3 ) 

where each term represents a fraction of the total variance and thus can be used to estimate the 

sensitivity of model predictions to input parameters. The terms in the first sum are the first-order 

sensitivity indices, the terms in the second sum are the second-order sensitivity indices, and so 

on [Homma and Saltelli, 1996]. The first-order indices, also called main effects, indicate the 

reduction in V(Y) that would be obtained if parameter Xi could be set to a fixed value. The main 

effects are useful to prioritize parameters for uncertainty reduction, thus guiding research toward 

determining more accurate values for parameters with large first-order sensitivity indices. 

The higher-order indices indicate variance explained by interactions between parameters, which 

cannot be attributed to individual effects of input parameters. For instance, Sij accounts for the 
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variance explained by the interaction between Xi and Xj so that a non-zero Sij  indicates that the 

effect of Xi on Y would also depend on what value Xj takes.  

A useful measurement of sensitivity is the total sensitivity index (STi) which is the sum of all the 

terms involving xi in equation (3). STi can also be thought of as the variance that would remain if 

all input parameters but xi could be set to fixed values. The total index is useful to determine 

which input parameters are not very important (either directly or through their interactions) for 

the model uncertainty, so that parameters with small total indices can be fixed at default values. 

Si and STi have also been expressed as [Saltelli et al., 2010] 

~
|

 ( 4 ) 

and 

~
| ~

1 ~
| ~

 ( 5 ) 

where  represents the 	input parameter, and  and  indicate variances and expectations 

taken over all values of . Similarly ~  represents all input parameters but , and  
~

 and 

~
 indicate variances and expectations taken over all parameters keeping  fixed. 

In practice, estimation of sensitivity indices given by equations 4 and 5 requires a large 

number of model evaluations. The method for estimating the variances and sensitivity indices in 

these equations is presented in the Appendix. 
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3. Methods 

We use CICE in standalone mode (section 3.1) to examine sea ice sensitivity to a much larger 

number of input parameters than has been addressed in previous studies. The model output 

variables of interest are sea ice extent, area and volume integrated over the northern and southern 

hemispheres.  Area refers to actual area of ocean covered by sea ice, while extent refers to the 

area covered by more than 15% sea ice. We initially identified 49 input parameters associated 

with the CICE configuration described in section 3.1, whose values are not accurately known and 

are therefore uncertain. We chose 39 of these input parameters (Table 1) to conduct the GSA, in 

order to examine as many uncertain parameters as possible, while neglecting 10 parameters from 

the analysis because they were specific to the ocean, or because there was enough confidence 

that they would turn out to be negligibly important for the variables of interest. The calculation 

of sensitivity indices for the 39 parameters left in the analysis would require a very large number 

of model evaluations and a full exploration of the parametric space over the entire ranges of 

plausible parameter values (section 3.3). In practice, this is computationally prohibitive for the 

sea ice model configuration used in this study and therefore the use of a statistical emulator is 

explored to produce data points at a reduced computational cost (section 3.5). Next we introduce 

the main features of CICE, the criteria used to design the ensemble of different model 

configurations, the implementation of a Gaussian process emulator to approximate the CICE 

model, and the methodology used to estimate the sensitivity indices.  

3.1. Los Alamos Sea Ice Model 

CICE is one of the most widely used sea ice models for climate research [Gent et al., 2011; 

Hewitt et al., 2011; Bentsen et al., 2013] and operational forecast systems at high latitudes 

[Tonani et al., 2015]. The model solves dynamic and thermodynamic equations for multiple ice 

thickness categories [Hunke et al., 2015]. For this analysis, in the dynamic component an elastic-

viscous-plastic (EVP) rheology is used to account for deformation of the ice pack [Hunke and 

Dukowicz, 1997], and sea ice is redistributed among thickness categories due to mechanical 

redistribution [Thorndike et al., 1975; Liscomb et al., 2007]. The thermodynamic component 

describes the ice pack as a mushy layer [Turner et al., 2013] in which desalination occurs as sea 

ice grows; temperature and salinity are prognostic variables over seven ice layers on each of five 
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thickness categories used in this study. Albedo and radiative fluxes at the surface of sea ice are 

computed using a delta-Eddington radiation scheme based on inherent optical properties defining 

scattering and absorption properties of the snow-ice surface [Briegleb and Light, 2007; Holland 

et al., 2012]. In the present model configuration, melt water and liquid precipitation falling over 

sea ice are tracked using a level-ice pond formulation in which melt ponds are carried as tracers 

on undeformed sea ice, and a depth-area ratio is assumed for changes in pond volume [Hunke et 

al., 2013]. 

In this study we use CICE in standalone mode with a horizontal resolution of 1º [Hunke and 

Holland, 2007].  The model’s slab ocean mixed layer is forced by a monthly climatological 

ocean forcing derived from a Community Climate System Model (CCSM) run [Collins, et al., 

2006]. The oceanic forcing fields consist of sea surface slope and currents, salinity and deep 

ocean heat fluxes. Atmospheric forcing fields of 6-hourly wind speed, air temperature, and 

specific humidity are taken from the coordinated ocean-ice reference experiment (CORE 2) 

[Griffies et al., 2009; Large and Yeager, 2009].  The atmospheric forcing also includes the 

specification of monthly climatologies of precipitation [Griffies et al., 2009] and cloud fraction 

[Röske, 2001]. The model is integrated from 1958-1975, with no ice as initial condition. In 1975 

several model runs with different configurations (described in the experimental design of section 

3.3) are restarted and run until 2009. Only model results from 1980-2009 are used in the 

sensitivity analysis to allow the model to adjust after the 1975 restart. 

3.2. Prior distributions of uncertain parameters in CICE  

The CICE configuration described above has a number of uncertain parameters that were 

broadly categorized in terms of the physical processes in which they are involved (Table 1). 

Uncertainties associated with 39 parameters examined in this study are characterized through 

probability distributions, including the minimum and maximum values that individual 

parameters can take. In order to assign prior probability distributions to the parameters 

(representing our prior knowledge about them), we determined plausible values that these 

parameters might take based on a literature review of experimental data, model studies, and 

expert judgment.  
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Probability distributions for the model parameters are not generally available, except for a few 

parameters such as ice and snow density. Different types of probability distributions are used to 

characterize uncertainty in the input parameters. Uniform distributions are used when there is a 

considerably lack of information about a parameter’s actual distribution. Normal distributions are 

assigned if standard deviation and mean values are available from the literature review, and 

observations support Gaussian behavior. In cases when not much information is available for a 

given parameter, but different references suggest unimodal distributions centered at a preferential 

value, a triangular distribution is chosen. Whenever a parameter is constrained to be positive, or 

varies across several orders of magnitude, log-uniform, log-normal, or log-triangular 

distributions are considered. For parameters representing ratios, ranging between zero and one, 

logit-normal distributions are considered. Where there is enough information, we center the 

distributions at the mean values found in the different studies, and the parameter’s minimum and 

maximum values are set at +3 standard deviations from that mean. If these extremes lie far away 

from realistic values, or do not appear to be plausible, we set them in a more ad-hoc manner. A 

summary of each parameter’s prior (pdf, minimum, and maximum values) specified in this study 

is presented in Table 2. 

The distributions describing uncertainty in input parameters (Table 2) are used to design 

combinations of parameters to be used in the GSA. In particular, a 39-dimensional unit 

hypercube is used in the next section to produce ensemble designs. First, the coordinate of a 

given parameter in a unit hypercube is mapped onto an ordinate in the closed interval defined by 

the cumulative distribution functions of the minimum and maximum values for that parameter. 

Second, the corresponding parameter value is obtained by taking the inverse cumulative 

distribution function of the ordinate previously obtained. More details about the methods used to 

design the sets of parameter combinations used in this study are described in the following 

section. 
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3.3. Experimental design 

In GSA the full exploration of high dimensional parametric spaces requires the sampling of 

data points to be done efficiently to keep the number of model evaluations as small as possible. It 

is a common practice to use low-discrepancy sequences as a type of quasi Monte Carlo sampling 

in the design of sampling matrices (sequences of data points consisting of different combinations 

of input parameter values). Low-discrepancy sequences are constructed to distribute data points 

uniformly over the parametric spaces, and include Latin Hypercubes, Niederreiter, Halton, and 

Sobol’ sequences [Lemieux, 2009]. In this study we have used scrambled Sobol’ sequences 

[Owen, 1998] which allow good pairwise distributions in high dimensions with the added feature 

that additional data points added to the sequence guarantee higher density sampling of the 

parameter space.  

Using scrambled Sobol’ sequences, model ensembles are created for 39 dimensions, the same 

number of input parameters. In each ensemble member, all of the 39 input parameters change 

their values so that a large number of sampling points in parameter space is possible. We first use 

the Sobol’ design, along with the prior distributions in Table 2, to conduct 150 CICE model runs 

and make a preliminary screening of input variables -output variables relationships (section 3.4). 

Then 400 Sobol’ points are added to the initial sequence, adding up to a total of 550 model runs, 

whose results are used to train a surrogate of the model. The first 400 members of this extended 

Sobol’ sequence (including those in the preliminary screening) are transformed onto parameter 

space using the priors in Table 2. The last 150 members are transformed using uniform 

distributions for all of the 39 parameters, to increase the sampling at the tails of the prior 

distributions (section 3.5). Finally, we use Sobol’ sequences to produce large sampling matrices 

(~105 members) for use in the estimation of the sensitivity indices (section 4.3).  

3.4. Preliminary screening 

The calculation of sensitivity indices requires a very large number of model evaluations. Test 

cases conducted on highly non-linear analytical functions with O(10) parameters have shown 

that the number of model evaluations required to obtain the total sensitivity indices is O(104) 

[Saltelli et al., 2010]. This number of model evaluations would be computationally prohibitive 

for a complex and computationally intensive model such as CICE, which depends on four times 
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that many input parameters. We seek an emulation to accomplish fast estimates of model 

predictions (section 3.5). However, emulators of high dimensional functions might not scale well 

and can be very hard to construct [Bengio et al., 2006]. If the subset of input parameters that 

accounts for global variations of a function (or active variables) is large, then building an 

emulator can be impractical [O'Hagan and West, 2013].  

As was mentioned in section 3.3, we initially conducted a set of 150 CICE model evaluations 

to preliminarily screen the model predictions, assess the suitability of implementing a statistical 

emulator for sea ice extent, area, and volume in CICE, and to identify inactive parameters that 

could be fixed in the analysis to alleviate the computational cost.  In this approach, we look for 

evidence of non-random relationships between the model predictions and each of the 39 input 

parameters using a combined squared rank differences and Spearman’s rank correlation test 

[Hora and Helton, 2003]. The method is useful to detect monotone relations as well as general 

non-linear patterns in datasets of model inputs and model predictions. 

Of the initial 150 runs, about 100 were successful and could be used for the preliminary 

screening. Other runs failed due to parameter-induced instabilities. From the screening, the 

number of active variables (for which non-random behavior was detected) per output variable of 

interest ranges somewhere between 4 and 12 parameters (not shown), which indicates that 

building an emulator might be feasible for these types of variables. The preliminary screening 

also showed that a relatively large number of parameters displayed non-random relationships 

with variables of interest at some point throughout the year, therefore supporting our choice of 

not fixing any of the 39 parameters made in the experimental design. 

3.5. Gaussian Process Emulator 

The predictions from the CICE model are deterministic for a given combination of input 

parameter values, and GSA requires running CICE many times (~1000 per input parameter, 

[Oakley and O'Hagan, 2004]) to fully explore the parameter space, which is impractical from a 

computational standpoint. An alternative is to build a fast surrogate (or emulator) of CICE to 

produce estimates for any combination of input parameters. We use a Bayesian approach to 

represent scalar output variables of interest (sea ice extent, area, and volume) in terms of 
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unknown functions following Gaussian distributions at every input point (i.e., every combination 

of 39 input parameters). That is, the prediction of the emulator has a Gaussian distribution  

which is fully characterized by its mean and covariance. An underlying assumption of Gaussian 

process emulators is that the model response is a smooth function of the inputs, so that nearby 

input points have similar response function values. A Gaussian process of a model output 

variable  is described as 

∙ ~ GP ∙ , ∙,∙  ( 6 ) 

where ∙  is the mean function, and ∙,∙  the covariance function specifying the covariance 

between pairs of random variables. Prior assumptions about the mean and covariance functions 

must be made and then updated using evidence from a training dataset. First, the training and test 

points are given by Xt and X*, respectively, and the mean and covariance priors by ∗  and 

∗,  , respectively. Without loss of generality the prior mean ( ∗) is typically assumed to be 

zero. Secondly, in order to obtain predictions of ∙ , the prior is updated using evidence coming 

from the training dataset. The distribution of ∗  conditioned on the training data  is then 

(see Rasmussen and Williams [2006] for details on Gaussian processes) 

∗ | 	~	 ∗ ∗, ∙ , ∙ , ∗, ∗ ∗,

∙ , ∙ , ∗  
( 7 ) 

The form of the covariance between predictions in terms of the input parameters requires 

covariance functions, which have a number of hyperparameters controlling the smoothness 

(length scales) and the overall variance (signal variance) of the functions. The covariance 

structure is separable in parameter space, implying that length scales are different for each 

parameter. We use the GPy library implemented in Python [The GPy authors, 2012-2015] to fit 

emulators for each scalar output variable of interest (i.e. sea ice extent, area, and volume). 

Emulators were fit using different covariance functions including exponential, squared 

exponential, Matern 3/2, Matern 5/2, and combinations of sums and products among them 

[Rasmussen and Williams, 2006]. Multiplication and summation of covariance functions can, in 

principle, improve emulator performance when the process underlying a dataset has more than 
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one length scale associated with it. Each time an emulator is fitted, the hyperparameters are 

optimized by maximizing the likelihood of the data given the fitted emulator (marginal 

likelihood). In addition, logarithmic and square root transformations were also applied during the 

fitting process to obtain better emulation performance [O'Hagan, 2006].  

We have followed a cross-validation approach to choose among emulators with different 

covariance functions and different data transformations. In this context, the entire set of actual 

model runs is used for training and validation purposes. In this study the entire dataset is divided 

into 10 subsets. Each subset is used as validation dataset once, while the remaining 9 subsets are 

used as training datasets. The metric used to assess the emulator performance is the square error 

between the emulated and simulated mean quantities. For each covariance function and data 

transformation, a root-mean-square error (RMSE) is computed over all the validation points in 

the 10 emulators fitted during cross validation, and the emulator combining the covariance 

function and data transformation with the smallest RMSE is chosen for a particular output 

variable of interest (section 4.2). The entire dataset (as opposed as subsets) is then used to train 

an emulator that uses the optimal combination of covariance function and data transformations as 

described above. 

4. Results 

In this section we present results of sea ice extent, area and volume from an ensemble of 302 

members to illustrate the propagation of parametric uncertainty onto model predictions. We also 

present results from the cross-validation of Gaussian emulators (built using an ensemble of 397 

members) for the output variables of interest. At the end of the section we present the sensitivity 

indices for the CICE model, including a ranking of the most important parameters contributing to 

the CICE model uncertainty in the current model configuration.  

4.1. Parameter uncertainty propagation onto CICE predictions 

We use the results of 302 model runs whose configurations used the parameters prior 

distributions (~24% of runs crashed due to instabilities caused by some parameter combinations) 

to examine how uncertainty in the input parameters (Table 2) propagates onto model predictions 
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(i.e. sea ice extent, area, and volume). Figure 1 shows histograms of sea ice extent, area, and 

volume produced by the ensemble of 302 simulations in the northern hemisphere in September 

and March. In summer the spread is considerably larger and the variables are more uniformly 

distributed than in winter. The winter estimates have less spread and are characterized by more 

unimodal distributions than in summer, indicating that parameter uncertainty is less important in 

winter. In the southern hemisphere (Figure 2), the cross-ensemble variability is relatively small 

and similar in March and September for sea ice extent and area. This variability is, however, 

much larger in September than in March for sea ice volume, indicating that ice thickness can be 

very sensitive to parameter choices during winter in the southern hemisphere. 

The propagation of parametric uncertainty onto the monthly mean extent, area and volume is 

shown in Figure 3. After the maximum ice extent is reached in March in the northern 

hemisphere, parametric uncertainty in the sea ice extent and area estimates begins to grow, 

becoming considerably large by the end of spring through the end of summer (Figure 3a, c). 

With ice starting to grow in fall, uncertainty in extent and area is reduced, becoming almost 

negligible throughout the winter. The low uncertainty in the winter sea ice area estimates is 

explained by the prescribed atmospheric forcing driving high concentrations over most of the 

Arctic Ocean. The winter sea ice extent estimates, however, are more affected by the melting 

rates at the ice-ocean interface, which are determined largely by the prescribed climatological 

ocean conditions in standalone simulations of sea ice [Bitz et al., 2005]. Unlike extent and area, 

parametric uncertainty in sea ice volume is large all year round in the northern hemisphere 

(Figure 3e). It is expected that in a fully couple model parametric uncertainties of sea ice extent 

and area also become important all year round (including winter). In a fully coupled context the 

choice of sea ice parameters should feedback on the atmosphere, which would result in 

uncertainty estimates of winter sea ice extent and area larger than those in Figure 3a and c.  

In the southern hemisphere the uncertainty in the model estimates of sea ice extent and area is 

the lowest during fall, when sea ice begins to grow, and during winter. Once the sea ice begins to 

retreat in spring, the uncertainty rapidly increases. With the sea ice pack coverage dramatically 

shrinking in summer, most of the ensemble runs become insensitive to parametric uncertainty. 

The uncertainty in the model estimates of sea ice volume in the southern hemisphere has a more 
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distinctive seasonality than in the northern hemisphere. As the sea ice pack starts to shrink in the 

Southern ocean during spring, the uncertainty in sea ice volume estimates begins to decay. With 

the expansion of the sea ice pack in winter, the volume estimates have large uncertainty and the 

choice of parameter values becomes very important. 

The CICE default configuration typically produces estimates within one standard deviation 

above the ensemble mean estimates. Observational estimates shown in Figure 3 are generally 

within model ensemble estimates, except for a slight overestimation of the sea ice area in the 

ensemble during winter in both the northern and the southern hemisphere. Further reduction in 

the uncertainty of input parameters are not expected to improve considerably the agreement in 

the annual cycle between model estimates and observations because their difference is several 

times bigger than the range of model predictions. However, uncertainties associated with the 

ocean and atmospheric forcing can be more relevant than parametric uncertainty to produce 

better model agreement with observations, particularly when parametric uncertainty is 

considerably low.  

4.2. Emulator validation 

From the preliminary screening (section 3.4) we expect around 10 active parameters per 

output variable. Since the required number of model runs required to build an emulator is 

recommended to be at least 10-15 per active variable [O’Hagan, 2006; Oakley and O’Hagan, 

2001], we have conducted a total of 550 model runs as described by the experimental design 

(section 3.3). The mapping of the Sobol’ design onto parameter space was made as described in 

section 3.2 using a mixture of the parameters prior distributions and uniform distributions. 

Using the monthly sea ice extent, area and volume from an ensemble of 397 successful model 

runs (~28% runs failed out of 550) we fit Gaussian emulators and select the one which 

minimizes the RMSE between training points and test points. The emulator with the best 

performance is then used to conduct the sensitivity analysis. Figure 4 shows the RMSE values 

obtained for the emulators for which the best fit is obtained as described in section 3.5. The 

accuracy of the emulator in terms of RMSE varies throughout the year, which is closely related 

to the variable uncertainty found in the ensemble runs as indicated in Figure 3.  
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In the northern hemisphere the largest errors in the emulated extent and area occur in August 

(Figure 4), when the parametric uncertainty in the ensemble is also the largest.  The RMSE in 

summer area and extent is about 10-20% of the ensemble mean quantities. As expected from 

Figure 3, the emulator performance in winter, spring, and fall is very good. The emulator errors 

for sea ice volume in the northern hemisphere are relatively constant throughout the year in 

accordance with the uncertainty in the ensemble, and the RMSE as a percentage of the ensemble 

mean thickness decreases from about 17% in September to about 6% in April. 

In the southern hemisphere the RMSE is generally smaller than in the northern hemisphere. 

The emulated sea ice extent, area, and volume have relatively better accuracy from February-

October than from November-January. The RMSE as a percentage of the ensemble mean 

quantities has a maximum value of about 20% (February), and values less than 2% from 

November-January indicating good emulator accuracy for most of the year in the southern 

hemisphere. The relatively smaller RMSE in southern hemisphere than in the northern 

hemisphere suggests that the emulator generally produces better estimates in seasonal ice than in 

multiyear ice regimes. 

We show comparisons of emulated and simulated September sea ice volume conducted 

during cross-validation over different validation sets for the northern (Figure 5) and the southern 

hemispheres (Figure 6). In the northern hemisphere most of the model simulations fall within 

one standard deviation of the mean emulation prediction. There are a few validation points where 

the disagreement between emulated and simulated sea ice volume is relatively important, 

particularly in the validation set 9, possibly due to parameter subspaces in which sampling of 

training points is not optimal due to rapid variations of the model predictions. In the southern 

hemisphere the emulator predictions match very well the model estimates in all the validation 

sets.  

The emulator has shown skill in predicting model results within reasonable error bands. The 

least agreement is found at the end of summer in the northern hemisphere. Given the complexity 

of the processes controlling summer Arctic sea ice variability, the emulator performance is still 

satisfactory for the purpose of conducting the sensitivity analysis, whose results are presented in 

the next section. 
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4.3. CICE sensitivity indices 

In GSA, total sensitivity indices give the overall importance that input parameters have on 

model sensitivity; parameters with total sensitivity indices close to zero are unimportant in terms 

of sensitivity and can be fixed at some default value without significantly affecting the model 

predictions. Parameters with low first order sensitivity indices could still have important 

interactions with other parameters and therefore should not be set at fixed values. 

The first order and total sensitivity indices are estimated as described in the Appendix using 

N=105 to guarantee the convergence of sensitivity indices with p=39 parameters. This implies 

that the required number of emulator estimates per output variable of interest is 2 10  

emulator runs (A and B matrices) plus 10  (  matrix) emulator runs per input parameter. 

Therefore a total of 4.1 10  emulation predictions are required to obtain the sensitivity indices 

of a single output variable.  

The seasonal evolution of the total sensitivity indices in the northern hemisphere is shown in 

Figure 7 for the sea ice extent, area and volume for a selection of the parameters contributing to 

the model uncertainty (see also Tables 1 and 2 for parameter names and ranges of variation). The 

model predictions are highly sensitive to the snow conductivity (ksno) all year round with ST > 

0.47 for ice volume and ST > 0.2 for extent and area. Parameters controlling the melt pond 

drainage (lambda_pond) and the maximum snow grain size (rsnw_mlt) are important during 

summer and early fall with ST > 0.15. The snow grain size also affects model predictions through 

another parameter, R_snw, with ST > 0.05 from spring to fall. The ocean-ice drag is very 

important for sea ice extent and area through the dragio parameter during winter and spring 

when sea ice is advected less easily under the effect of seasonal winds, and considerably less 

important during summer and early fall when the ice drifts more freely. It is possible that the 

effect of dragio on sea ice volume is less important than on extent and area because volume is 

more easily affected by thermodynamics than by dynamical processes such as redistribution and 

opening of leads, particularly when the ice pack is tight. The sea ice area at the end of fall and 

beginning of winter is also affected by the assumed values of the solid fraction at the ice-ocean 

interface (phi_i_mushy) in the mushy thermodynamics formulation. Generally, as the total index 

(ST) of an individual parameter is reduced, the total indices of one or more other parameters 
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increase, indicating competing effects among relevant physical processes affecting sea ice 

throughout the year.  For instance, the sensitivity of the sea ice volume to ksno drops 

considerably at the end of spring and remains relatively low through summer in favor of the 

sensitivity to lambda_pond, rsnw_mlt, and R_snw.  

At the onset of the melt season, the sea ice and snow layers begin to melt and absorb solar 

radiation, making the latter parameters become active. The extent to which melt ponds are 

drained has an effect on the albedo of sea ice, which is a combination of the albedos of bare and 

ponded sea ice. The larger the fractional area of ponded ice, the more heat is absorbed by the ice 

pack, which has a direct effect on the melting of sea ice. Melt ponds can be formed by snow melt 

runoff, which depends also on the heat absorption of the snow pack. The snow albedo in the 

delta-Eddington formulation for absorption of shortwave radiation depends, among other things, 

on the snow grain size. This sensitivity analysis shows that rsnw_mlt and R_snw are the delta-

Eddington parameters with the highest sensitivity in sea ice model predictions. 

Sea ice in the southern hemisphere (Figure 8) is also highly sensitive to snow conductivity 

(ksno), though to a lesser extent than in the northern hemisphere. In the southern hemisphere 

dynamical processes acquire a larger relevance through processes involving dragio in the ocean-

ice drag formulation. In contrast to the northern hemisphere, the ocean-ice drag is important not 

only in winter and spring but also in summer. The R_snw and rsnw_mlt parameters affecting the 

snow grain size are still somewhat important in the southern hemisphere although to a lesser 

degree than in the northern hemisphere. 

Even though sensitivities of sea ice extent and area are generally correlated with each other, 

there are instances when the effect of one parameter on sea ice area differs considerably from the 

effect on sea ice extent. For instance, Figure 7b shows an increase of sensitivity of sea ice area to 

dragio while sea ice extent remains insensitive to that parameter in May. This spike in the 

sensitivity of sea ice area to dragio (Figure 7b) is accompanied by a sudden drop in the 

sensitivity to ksno (Figure 7a). From March to May when ice concentrations are relatively high, 

the changes in concentration will affect more the area than the extent. The sensitivities on sea ice 

area and extent could also differ due to changes in concentrations taking place away from the 

marginal ice zone, to changes in sensitivities associated with other parameters, or due to errors in 
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the sensitivity estimates arising from emulator error. 

In Figure 9 and Figure 10 we present the first order and the total sensitivity indices of the 

CICE input parameters for sea ice at the end of each of the four seasons. We focus the analysis 

on sea ice volume because it is an integrated measure of the thickness, which to a large extent 

determines the survivability of sea ice and therefore can be a more relevant variable to predict 

sea ice evolution [Holland et al., 2008; Chevallier and Salas-Mélia, 2012]. We have ranked the 

indices in order of decreasing importance for the September ice volume (month of minimum 

Arctic sea ice coverage) in the northern hemisphere. In the figures we have used 0.02 (shaded 

region) as a threshold to indicate that an effect is unimportant. The difference between the total 

sensitivity and the first order indices for an individual parameter along the horizontal axis 

indicates the relative importance of its interactions with other parameters. If the total sensitivity 

index is close to the first order index for a given parameter, there are no important interactions 

with other terms, and the effect of that parameter on the model predictions is purely additive (i.e., 

it does not depend on what values other parameters take). If the total sensitivity index is not close 

to the first order index however, then the effect of an individual parameter is non-additive and 

will depend on the values that interacting parameters take. 

The September sea ice volume in the northern hemisphere (Figure 9a) is sensitive to about 10 

parameters. The top 5 most important parameters are ksno, lambda_pond, rsnw_mlt, R_snw, and 

dragio, all of which display interactions with other parameters. The other parameters with non-

negligible sensitivity indices include density of sea ice and snow (rhoi and rhos, respectively), 

the thickness of the ice scattering layer (hi_ssl), the aspect ratio of the yield curve (ecc), and the 

strength of the slow drainage mode in the mushy thermodynamics (dSdt_slow_mode). In fall and 

winter (Figure 9b and c) the sensitivity of the model becomes larger for ksno but reduces for the 

other parameters. The high sensitivity to ksno highlights the importance of the insulating effect 

of the snow cover (which will be discussed in section 5) along with the effects that other 

parameters have on sea ice volume. During the ice growth season the interaction between model 

parameters also decreases and sensitivity is due mainly to first order effects. In spring, the R_snw 

indices begin to spin up (Figure 9d), but other parameters that are also active during the melt 

season only become important in summer (Figure 9a). 
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In the southern hemisphere the sea ice volume is also highly sensitive to ksno. In comparison 

with the northern hemisphere, however, the importance of lambda_pond and rsnw_mlt is 

considerably reduced. During summer (Figure 10c), dragio, rhoi, and ecc are considerably more 

important in the southern hemisphere than they are in the northern hemisphere. The energy 

dissipation parameter due to shear (Cs) is important only in the southern hemisphere. Without 

considering the effect of ksno, this would indicate that in comparison with the Arctic, the 

sensitivity of sea ice in the southern ocean appears to be more affected by dynamical processes 

than by thermodynamic processes. The interactions between model parameters are also less 

important in the southern hemisphere, except for interactions associated with dragio which 

appear to be produced almost entirely by interaction with ksno (Figure 10c). In fall, winter, and 

spring (Figure 10d, a, and b), sea ice volume is sensitive to fewer parameters and their 

interactions are small. Besides sensitivity to ksno, important parameters also include 

dSdt_slow_mode in fall and winter, and rhoi and astar in winter and spring.  

We also estimated the sensitivity indices in different ice regimes, one during the 1980s when 

relatively large amounts of sea ice were present in the Arctic, and another during the 2000s when 

historical minima of sea ice occurred in the Arctic (not shown). There was no evidence that the 

sensitivity to input parameters changed considerably between these two different climatic 

conditions, with only marginal differences in the fractions of the total variance produced by 

individual parameters, and shifts in the parameter rankings in only a few cases. 

Our parameter rankings are broadly consistent with previous sensitivity studies. In particular, 

ice and snow conductivities, and albedos have been found to be the most important parameters in 

Kim et al. [2006], Peterson et al. [2010], and Uotila et al. [2012]. While our study does not 

explicitly examine albedos because these are computed internally within  CICE, it identifies 

important parameters controlling snow grain size (rsnw_mlt and R_snw) which ultimately affect 

the albedo estimates in the delta-Eddington radiation scheme. Our study also identifies important 

parameters previously found unimportant or not examined such as lambda_pond, rsnw_mlt, 

astar, and hi_ssl. These parameters suggest the important role of specific melt pond (drainage), 

snow (grain size) and ice (scattering, and ridging) parameters contributing to model uncertainty. 

Arctic ice volume is relatively less sensitive to ice density (rhoi) in this study than in previous 
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studies [Kim, et al., 2006] because its importance is superseded by the snow and melt pond 

parameters mentioned above. A comparison with a previous sensitivity study in a coupled 

climate model [Rae et al., 2014] shows that conductivity is the most important parameter in both 

standalone and fully coupled configurations. While R_snw is important in both configurations, 

our study suggests that other parameters (rsnw_mlt, lambda_pond) are even more important, 

which could be partially explained by the more comprehensive list of input parameters included 

in our study. 

5. Discussion of main effects and interactions 

The sensitivity indices estimated in section 4.3 measure the sensitivity of sea ice to the 

individual parameters and the interactions among them. They do not, however, provide much 

insight onto the functional relationships between the sea ice variables and the effects of 

individual parameters, or the physical processes underlying such relationships. We focus on the 

September Arctic sea ice volume to discuss its relationships with the most important parameters 

in terms of parametric uncertainty. We seek a generalized additive model [Hastie and Tibshirani, 

1986; Wood, 2000] with the structure given by equation (1), but with inputs (Xi) restricted to the 

top ten (p=10) most influential parameters in Figure 9a. A generalized additive model assumes 

that the model prediction is the sum of unknown functions of the parameters, which are 

estimated non-parametrically rather than based on assumed forms such as polynomials. For 

simplicity we consider only the first and second order terms in equation (1), and neglect higher 

order interactions so that ∑ ∑ , . The main effects are the 

univariate functions in the first summation, and the second order effects (or interactions) are the 

bivariate functions in the second summation of the expression for f(X). In the expression for f(X) 

the expected value over all the input parameters is f0 and therefore the main and the second order 

effects represent deviations from that expected value. 

In order to fit an additive model for September Arctic sea ice volume we evaluate the 

emulator 104 times, varying the top 10 important parameters and setting the unimportant 

parameters fixed at default values. The main effects (one per parameter) are obtained by 

applying non-parametric smoothing functions to one-dimensional scatterplots of sea ice volume 
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versus each of the 10 parameters included in the model [Wood, 2006; Wood, 2015]. Similarly, 

the interactions between pairs of parameters are obtained by smoothing two-dimensional 

scatterplots of the sea ice volume as a function of pairs of parameters, which amount to 44 

second order interactions.  

5.1. Main effects 

Figure 11 shows the main effects on the most important model parameters controlling the 

simulated September Arctic sea ice volume. The main effects give the sensitivity of the model to 

variations in one individual parameter when the model predictions are averaged over all other 

parameters. Thus the figure shows first order changes in sea ice volume as a function of 

individual parameters along their (normalized) plausible range of values. Note that the 

relationships between ice volume and lambda_pond, rsnw_mlt, dragio, ecc, and ksno have clear 

non-linear behavior. 

The variation of sea ice volume is larger as a function of ksno (Figure 11a) in comparison 

with the variation produced by other parameters (Figure 11b-i). An increase in snow conductivity 

reduces the insulation effect of the snow, resulting in larger heat losses and ice growth during 

winter. As lambda_pond increases melt pond drainage occurs faster, reducing the fractional area 

of ponded sea ice. Ponded sea ice has lower albedo than bare ice and therefore promotes sea ice 

melt. Large values of lambda_pond associated with bare ice lead to large sea ice volume while 

lower values associated with ponded ice result in reduced volume (Figure 11b). The main effect 

for lambda_pond tends to flatten near the extremes, which can be indicative of thresholds 

beyond which sea ice volume is insensitive. These thresholds could occur because virtually all 

sea ice is ponded (low lambda_pond), or because melt ponds have been totally flushed out of the 

sea ice surface (high lambda_pond).  

The sensitivity of the model to parameters involved in the radiation scheme is encompassed 

mainly in rsnw_mlt, R_snw, and hi_ssl (Figure 11c, d, and g). The first two parameters affect 

directly the estimation of the snow grain size, and the third parameter is the thickness of the ice 

scattering layer. For relatively small snow grain sizes, the maximum melting snow grain size 

(rsnw_mlt) has a big influence on sea ice volume (Figure 11c). Constraining the snow grain size 
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also constrains the lower bound of snow albedo. When rsnw_mlt is small, increasing its value 

results in a dramatic decline of ice volume due to considerable reduction in snow albedo and 

enhanced absorption of solar radiation. The sensitivity of sea ice volume is much less important 

at high values of rsnw_mlt possibly due to high melt rates which would deplete the snow pack 

beyond certain grain sizes. The R_snw parameter gives the standard deviation of the snow grain 

size. Increasing R_snw has the effect of reducing the grain size in the delta-Eddington radiation 

scheme, increasing albedo and reducing absorption of solar radiation, which results in lower sea 

ice melt rates and increased September ice volume (Figure 11d). Increasing the thickness of the 

ice scattering layer (hi_ssl) considerably increases the ice volume (Figure 11g) by increasing the 

albedo and reducing the heat absorption of bare ice [Light et al., 2015], thus reducing the overall 

melting in the sea ice pack. 

September Arctic sea ice volume can also be sensitive to dynamic processes in the standalone 

model through the dragio and ecc parameters (Figure 11e and i). Sea ice volume is slightly 

sensitive at low values of the neutral ocean-ice drag, but largely sensitive at high values. 

Moreover, the main effect of dragio suggests that sea ice volume can either increase or decrease 

with dragio. At low dragio values, increasing of the neutral drag results in a slight reduction of 

Arctic sea ice volume, possibly because of the dominant role of the wind stress that would keep 

moving sea ice out of the Arctic into the North Atlantic. On the other hand, at relatively high 

values of dragio, increasing the neutral drag increases the ice volume. We speculate that 

enhancing the ocean-ice drag could slow down the transpolar drift, reducing the export of sea ice 

through Fram Strait and accumulating sea ice in the central Arctic. This would be consistent with 

previous studies suggesting that Arctic ice thickness is affected by Fram Strait sea ice export 

[Langehaug et al., 2013]. Sea ice volume is also sensitive to the aspect ratio of the elliptical yield 

curve (ecc). In  Figure 11i, sea ice volume decreases as ecc increases. Increasing ecc diminishes 

the capacity of the ice pack to withstand shear stress and the reduction in ice volume results from 

increased ice velocities and larger exports by the transpolar drift. 

The simulated sea ice volume is also sensitive to the choice of sea ice and snow densities 

(rhoi and rhos, respectively). Their main effects in Figure 11f and h show that the September 

Arctic sea volume monotonically increases as both rhoi and rhos increase.   These parameters are 
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lambda_pond in Figure 11b. At high values of ksno, the interaction is an increasing function of 

lamba_pond, which would steepen the main effect of lambda_pond in Figure 11b. The 

steepening of the main effect indicates that sensitivity to lambda_pond increases, and vice versa. 

When the conductivity of the snow pack (ksno) is high there is considerable sea ice coverage, 

which could sustain large coverage by melt ponds, which in turn would have a large effect on 

melt rates and volume changes. If ksno is relatively low, the ice pack shrinks considerably and it 

is easy for melt ponds to become ubiquitous on the ice pack, where any addition of ponds has no 

further effect on the ice volume. 

Another important interaction occurs between ksno and rsnw_mlt. Low values of ksno in 

Figure 12b tend to flatten the main effect of rsnw_mlt in Figure 11c, and high values of ksno, to 

steepen the main effect of rsnw_mlt.  The sensitivity of ice volume to ponded ice is large when 

there is large sea ice coverage, and ponds appear more quickly as the maximum melting snow 

grain size (rsnw_mlt) increases, because the snow albedo is less constrained towards high values. 

If on the other hand, the overall amount of sea ice is relatively low (low ksno), the surface of the 

ice pack quickly fills with ponds so that increasing rsnw_mlt no longer changes considerably the 

ponded ice albedo nor the total sea ice volume. When the maximum melting snow grain size 

(rsnw_mlt) is small, the ksno-rsnw_mlt interaction (Figure 12b) tends to steepen the main effect 

of ksno in Figure 11a. Low rsnw_mlt values limit the amount of solar radiation absorbed by the 

snow pack resulting in relatively less ponded ice, which enhances the sensitivity to heat 

conduction through snow layers. The opposite effect takes place as the main effect of ksno is 

flattened by the interaction of ksno-rsnw_mlt at relatively large snow maximum melting grain 

sizes. 

Similar to the ksno-rsnw_mlt, the interaction between ksno-R_snw also indicates an interplay 

between snow grain size and snow conductivity (Figure 12c). Both rsnw_mlt and R_snw affect 

directly the snow grain size and therefore the snow albedo. Note, however, that by increasing 

R_snw the snow grain size decreases as parameterized in the delta-Eddington formulation for 

shortwave radiation. Thus at high values of ksno, the interaction between ksno and R_snw 

increases the sensitivity of the main effect of R_snw, and vice versa (Figure 12c and Figure 11d). 
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Again, as with the interaction between ksno-rsnw_mlt, smaller grain sizes (or large R_snw) 

increase the sensitivity of the model to snow conductivity (ksno). 

6. Summary and conclusions 

This study presents a new approach for quantifying uncertainty in complex sea ice models 

that shows promise for applications in the context of fully coupled climate models. We have 

conducted a variance-based global sensitivity analysis of the Los Alamos sea ice model (CICE) 

to quantify the sensitivity of simulated sea ice conditions to input parameters in the model. This 

approach explores the sensitivity of the model over the full range of uncertainty of 39 input 

parameters. In the method used here there are no implicit assumptions on linearity or additivity 

of the model. We used a Gaussian process emulator to approximate model estimates of sea ice 

extent, area and volume. The emulation approach allowed numerous estimates of model 

predictions which are required to estimate key sensitivity measurements, the first order and the 

total sensitivity indices. By computing these effects we were able to identify the model 

parameters whose uncertainty contribute considerably to the model uncertainty, and elucidate the 

importance of interactions among input parameters. The estimation of the sensitivity indices are 

quantities to be used for research prioritization and establishing what parameters could be fixed 

to default values without significantly affecting the sensitivity of the model predictions. It is 

recommended that further research efforts are made to acquire more knowledge about the 

accurate value of parameters with high first order sensitivity indices, including calibration 

activities. 

The main physical result of this study is the identification of sea ice processes and parameters 

to which the CICE model is most sensitive. These include snow conductivity (ksno), drainage of 

melt ponds (lambda_pond), snow grain size (involving rsnw_mlt, R_snw), the thickness of the 

ice scattering layer (hi_ssl), snow and ice densities (rhos and rhoi, respectively), the ice-ocean 

drag (involving dragio), and the aspect ratio of the yield curve (ecc). Their effects on sea ice 

predictions were shown to vary throughout the year indicating seasonality of the main processes 

affecting sea ice extent, area, and volume. It was also shown that in comparison with the 

southern hemisphere, there are more active parameters driving the sensitivity of the model in the 
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northern hemisphere. Interactions among parameters are also more important in the northern 

hemisphere than in the southern hemisphere.  

We also interpreted the main processes driving the sensitivity of the model by interpreting the 

functional relationships between September Arctic sea ice volume and the most important 

parameters according to the sensitivity indices. Several of the main effects are non-linear 

relationships, in which the sea ice sensitivity to an individual parameter depends on the value of 

the parameter itself (e.g. drainage of melt ponds, ice-ocean drag, or the maximum snow grain 

size). The analysis also identified the most important interactions among input parameters, which 

have the effect of modifying the main effects of individual parameters, depending on what value 

the other interacting parameter takes. We found that important interactions between the snow 

conductivity (ksno) and the drainage of melt ponds (lambda_pond), and between the snow 

conductivity and the snow grain size (rsnw_mlt, R_snw). Previous studies had already identified 

the large sensitivity of sea ice variables to snow conductivity, but its interactions with the snow 

and melt pond parameters had not yet been identified. These interactions indicate an interplay 

between the conduction of heat through the snow pack and its effect on the ice volume, and the 

relative amounts of ponded sea ice which affect the albedo and melting rates of sea ice. It follows 

that interactions among parameters can be important, and that sensitivity studies in climate 

applications must consider these types of effects because additivity of main effects may not be 

justified. 

This study also found that model estimates of sea ice volume generally display more 

parametric uncertainty than estimates of sea ice extent and area. Model estimates have more 

uncertainty associated with parameters during summer than in winter. In particular, fall and 

winter estimates of sea ice area and extent have very little parametric uncertainty in both the 

northern and the southern hemisphere. Model predictions of sea ice extent and area during these 

seasons are expected to be affected more by atmospheric and oceanic forcing, than by parametric 

uncertainty. Summer predictions of sea ice conditions are largely affected by parametric 

uncertainty, and efforts should be made to reduce this source of uncertainty to achieve more 

robust prediction systems. 
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We acknowledge the fact that the sensitivity of a coupled atmosphere-ocean-ice system might 

differ from the results obtained in this study because of feedbacks among these components, 

which can affect wind patterns and heat transport through changes in clouds and atmospheric 

boundary layer [Taylor et al., 2013; Rae et al., 2014]. We will examine this issue for a reduced 

number of model parameters in a future study. We also point out that bringing more complexity 

to climate models requires a good characterization of new uncertainties incorporated in the 

modeling framework, as well as a complete assessment of the model sensitivity to new 

parameters included by new developments. This study has addressed this issue for the latest 

version of the CICE sea ice model, which includes numerous new physical parameterizations. 
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 Appendix. Estimation of sensitivity indices 

The direct estimation of the sensitivity indices (section 2) is made using the mean predictions 

produced by the emulator. Evaluation of equations (4) and (5) involves evaluation of integrals 

which is typically done using Monte Carlo, or quasi-Monte Carlo numerical integration. In 

practice, several estimators have been derived in previous studies [Sobol', 2001; Saltelli et al., 

2010; Owen, 2013]. We have followed [Saltelli et al., 2010] and used the following estimators 

for the sensitivity indices in terms of emulations estimates at sampling matrices A, B, and  , 

each containing N emulator runs. 

~
|

1
 (A1 ) 

and 

~
| ~

1
2

 (A2) 

These matrices have dimensions  corresponding to N emulator predictions and p 

parameters. The matrices A and B are Sobol’ sequences with N sample points. To obtain	 , 

for	 1, … , , the 	  column of matrix A is replaced by the column 	  of B. To obtain the 

sensitivity indices, equations (A1) and (A2) need to be normalized by the total variance V(Y) 

which is estimated as the variance over all the emulation predictions of A and B. 
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Tables 

Table 1. Uncertain input parameters in CICE v5.1 for the configuration used in this study. The parameters have been 

grouped in broad categories indicating the model physics they more directly affect.   

rhos snow density     

rhoi ice density     

   Ridging 

Melt ponds  astar participation function e-folding scale 

rfracmin min. fraction of melt water added to ponds  mu_rdg redistribution parameter 

rfracmax max. fraction of melt water added to ponds  C
s
 energy dissipated due to shear 

pndaspect aspect ratio of pond changes  C
f
 frictional dissipation 

hs1 snow depth transition to pond ice  fsnowrdg snow fraction surviving ridging 

    

Dynamics  Mushy thermodynamics 

iceruf roughness for neutral air-ice drag  kb thermal conductivity of brine  

dragio neutral ocean-ice drag  kappal thermal diffusivity of brine 

ecc yield curve aspect ratio  ksno thermal conductivity of snow 

   cp_ice sea ice heat capacity  

Radiation  phi_i_mushy solid fraction at lower interface 

rsnw_fresh fresh snow grain size  a_rapid_mode brine channel diameter 

rsnw_mlt max. melting snow grain size  Rac_rapid_mode critical Rayleigh number 

rsnw_nonmelt non-melting snow grain size  dSdt_slow_mode slow drainage strength 

rsnw_sig sigma of snow grain size  phic liquid fraction for impermeability  

dT_mlt melt/no-melt snow grain ∆temp.  advection_limit max. fraction of brine advection 

hi_ssl ice scattering layer  lambda_pond drainage time-scale of ponds 

hs_ssl snow scattering layer  viscosity_dyn brine dynamic viscosity  

hp0 pond depth for transition to bare ice.    

R_ice sigma coeff. for albedo of bare ice    

R_pnd sigma coeff. ponded ice albedo.    

kalg algae absorption coefficient.    

R_snw sigma coeff. for snow grain    

fr_min overcast factor for snow grain    
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Table 2. Prior probability distributions and range of variation of 39 CICE input parameters explored in the 

sensitivity analysis. The assumed probability density functions are indicated as N (normal), U (uniform), T 

(triangular), LN (log-normal), LU (log-uniform), LT (log-triangular), and LogitN (Logit normal). 

name pdf min max units References 

rhos N 260 410 kg m-3 [Derksen et al., 2014] 

rhoi N 839 959 kg m-3 [Alexandrov et al., 2010] 

kb U 0.49 0.6 W s-1 K-1 [Thomas and Dieckmann, 2009] 

kappal U 3×10-8 19×10-8 m2 s-1 
[Notz and Worster, 2009; 

Emms and Fowler, 1994] 

ksno U 0.03 0.65 W m -1 K-1 [Lecomte et al., 2013; Sturm et al., 1997] 

cp_ice U 1800 3800 J kg-1 K-1 [Thomas and Dieckmann, 2009] 

phi_i_mushy U 0.55 0.95 - [Turner et al., 2013] 

a_rapid_mode LU 6×10-5 4×10-3 m [Weeks and Hibler, 2010; Turner et al., 2013] 

Rac_rapid_mode U 1 50 - 
[Nield and Bejan, 2006; Jones and Worster, 2014;

Turner et al., 2013] 

dSdt_slow_mode LU -1.7×10-5 -1.7×10-10 m s-1 K-1 [Turner et al., 2013] 

phi_c_slow_mode LT 0.027 0.1 - [Gold et al., 2007; Turner et al., 2013] 

advection_limit U 0.001 0.015 - [Hunke et al., 2015] 

lambda_pond LU 1.15×10-8 1.15×10-4 s-1 [Hunke et al., 2015] 

viscosity_dyn N 1.6×10-3 3.6×10-3 Kg m-1 s-1 [Krembs et al., 2011; Seuront et al., 2010] 

rfracmin LogitN 0 1 - 
[Holland et al., 2012] 

Hunke et al., 2013] 

rfracmax LogitN 0 1 - [Hunke et al., 2013] 

pndaspect U 0.4 1.2 - 
[Perovich et al., 2003; Holland et al., 2012;  

Hunke et al., 2013] 

hs1 T 0 0.1 m 
[Wiscombe and Warren, 1980;  

Brandt et al., 2005] 

rsnw_fresh T 20 300 m [Aoki et al., 2000; Wiebe et al., 2013] 

rsnw_mlt T 250 3000 m [Meinander et al., 2013] 

rsnw_nonmelt U 20 500 m [Hunke et al., 2015] 

rsnw_sig U 100 400 m [Hunke et al., 2015] 
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name pdf min max units References 

dT_mlt U 1 2 K [Briegleb and Light, 2007] 

hi_ssl LN 0.003  0.1  m [Briegleb and Light, 2007; Nicolaus et al., 2012] 

hs_ssl LN 0.003  0.1  m [Briegleb and Light, 2007] 

hp0  U 0.0 0.30 m [Hunke et al., 2015] 

R_ice U -2 2 - [Briegleb and Light, 2007] 

R_pnd U -2 2 - [Briegleb and Light, 2007] 

kalg LU 0.001 2.4 m-1 [Briegleb and Light, 2007] 

R_snw U -2 2 - [Briegleb and Light, 2007] 

fr_min U 0.5 1.0 - [Briegleb and Light, 2007; Hunke et al., 2015] 

iceruf LN 0.1×10-4 19.8×10-4 m 

[Koch, 1988; Stössel, 1992;  

Vickers and Mahrt, 2006;  

Andreas et al., 2010a; Andreas et al., 2010b] 

dragio LN 0.2×10-3 160×10-3 - [Lu et al., 2011] 

ecc T 0.5 5 - [Flato and Hibler III, 1995; Lepparanta, 2011] 

astar U 0.01 0.07 - [Liscomb et al., 2007] 

mu_rdg U 1 7 m0.5 
[Liscomb et al., 2007; Hunke, 2010; 

Kim et al., 2006; Uotila et al., 2012] 

Cs LogitN 0 1 - [Flato and Hibler III, 1995] 

Cf U 0 50 - [Flato and Hibler III, 1995; Hopkins, 1998] 

fsnowrdg LogitN 0 1 - [Vaconppenolle, 2012; Hunke et al., 2015] 
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Figures 

Figure 1. Frequency histograms of the 1980-2009 monthly mean sea ice extent  (a, b), area (c, d), and volume (e, f) 

in the northern hemisphere during September (left) and March (right). Data includes model predictions from 302 

model runs at different input parameter combinations according to the experimental design described in section 3.3. 

Figure 2. Frequency histograms of the 1980-2009 monthly mean sea ice extent  (a, b), area (c, d), and volume (e, f) 

in the southern hemisphere during September (left) and March (right), as in Figure 1. 

Figure 3. The 1980-2009 monthly mean sea ice extent  (a, b), area (c, d), and volume (e, f) in the ensemble of 302 

model runs at different input parameter combinations according to the experimental design in section 3.3. The 

ensemble model mean +/- one standard deviation are given by blue dots and whiskers, respectively. For comparison, 

observational estimates are included as red dots [Fetterer et al., 2002; Kurtz and Markus, 2012; Zygmuntowska et 

al., 2014] and the estimates from a CICE run using default parameter values as yellow dots. The shaded region 

encloses the envelope of 302 ensemble model predictions. 

Figure 4. Root-mean-square error (RMSE) of the Gaussian process emulators for each model output variable, fitted 

to monthly mean model predictions from 397 runs.  

Figure 5. Comparison of mean emulation prediction and simulated September mean sea ice volume in the northern 

hemisphere in 9 cross-validation datasets. Diagonal lines indicate perfect agreement between emulated and 

simulated ice volume, and whiskers indicate one emulator standard deviation from the mean prediction. 

Figure 6. Comparison of mean emulation prediction and simulated September mean sea ice volume in the southern 

hemisphere in 9 cross-validation datasets. Diagonal lines indicate perfect agreement between emulated and 

simulated ice volume, and whiskers indicate one emulator standard deviation from the mean prediction. 

Figure 7. Seasonal variation of the total indices of six input parameters affecting uncertainty of sea ice extent, area, 

and volume in the northern hemisphere. 

Figure 8. Seasonal variation of the total indices of four input parameters affecting uncertainty of sea ice extent, area, 

and volume in the southern hemisphere. 

Figure 9. The first order (blue) and total (red) sensitivity indices of 39 input parameters affecting sea ice volume in 

the northern hemisphere during (a) September, (b) December, (c) March, and (d) June. The parameters are listed in 

descending order of importance for the end of summer (September) sea ice volume. 
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Figure 10. The first order (blue) and total (red) sensitivity indices of 39 input parameters affecting sea ice volume in 

the southern hemisphere during (a) September, (b) December, (c) March, and (d) June. The parameters are listed in 

descending order of importance for the end of summer (September) sea ice volume in the northern hemisphere as in 

Figure 9. 

Figure 11. Main effects of the most important parameters affecting September sea ice volume in the northern 

hemisphere (Figure 9). The main effects (black curves) represent the first order terms in equation (1) as anomalies 

around an expected value (f0). Red lines represent the 95% confidence intervals of the main effects. Horizontal axes 

are normalized for the minimum and maximum values for each parameter as in Table 2.  

Figure 12. Second order interactions affecting September sea ice volume in the northern hemisphere including (a) 

ksno-lambda_pond, (b) ksno-rsnw_mlt, and (c) ksno-R_snw. The interactions represent second order terms in 

equation (1) as anomalies around an expected value (f0).  The figure axes are normalized between 0 and 1  for the 

minimum and maximum values for each parameter as in Table 2. 
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